
New Monotone Type Approximations for 
Elliptic Problems 

By James H. Bramble and Bert E. Hubbard 

I. Introduction. In the usual study of the discretization error resulting from 
approximating boundary problems for elliptic equations by finite difference methods 
the maximum principle plays a central role. In 1930 S. Gerschgorin [11] gave a 
method for estimating the order of convergence of the solution to a certain class of 
finite difference analogues to the solution of the Dirichlet problem for elliptic equa- 
tions. The matrix of the resulting system of simultanieous linear equations belongs 
to a special class for which one can easily prove that the inverse exists and has only 
non-negative elements. Interpreted in the language of analysis this means that the 
finite difference Green's function shares the property of non-negativity with its 
continuous counterpart. 

Armed with this knowledge the final step in relating the discretization error 
(the difference between the solutions of the continuous and discrete problems) to 
the local truncation error (the error produced in approximating the differential 
equation in the regioit R and boundary conditions on the boundary C) now only 
involves bounding the maximum row sum of the inverse matrix. This can be accom- 
plished easily, either directly or by using a function which bounds the corresponding 
integrals in the continuous problem. The bound thus produced is independent of 
the mesh size, h. In fact, using this approach, we are able to isolate the contribution 
to the discretization error arising from the local truncation error in different parts 
of the region. In particular it can be shown that under certain conditions if one de- 
sires the discretization error to be 0(h') then it is sufficient that the local trunca- 
tion error be 

(a) 0(h') in the interior of the region R, 
(b) 0(h') on the boundary C, 
(c) 0 (h'1) at points in R adjacent to Ci (that portion of C where a mixed or 

Neumann condition is given), 
(d) 0(hn-2) at points in R adjacent to C2 (that portion of C where Dirichlet 

data are given). 
A discussion of these questions for the Dirichlet problem for Poisson's equation 

can be found in Bramble and Hubbard [3]. 
As was mentioned earlier the matrix of the finite difference analogue formulated 

by S. Gerschgorin belongs to a special class. In particular it is of "positive type" 
and thus is easily shown to possess a non-negative inverse. Matrices which arise 
very naturally in connection with elliptic boundary value problems may or may 
not be of positive type. The main purpose of this paper is to show that in many of 
these cases it is possible to prove that the inverse matrix exists and is non-negative 
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even though the matrices are not of positive type. In each case we then derive the 
associated error estimates. 

In Section 2 certain known theorems on monotone matrices are presented to lay 
the groundwork for two new theorems, 2.6 and 2.7, which give sufficient conditions 
for monotonicity. Theorem 2.6 in fact gives a necessary and sufficient condition for a 
matrix to be monotone. 

rThe remaining sections give applications of Theorem 2.7 to estimates of the 
order of convergence of the solution of certain finite difference problems to the 
solutions of various elliptic boundary value problems. In each case the matrix of 
the resulting linear system violates the sufficient conditions for monotonicity given 
in the classical theorems. 

In Section 3 an 0(h4) finite difference analogue of the Dirichlet problem for 
Poisson's equation in a rectangle is given. The finite difference Laplace operator is 
the nine point cross. The usual five point 0(h2) operator is used near the boundary, 
yet the discretization error is shown to be O(h4). In Section 4 the results of Section 
3 are extended to general regions. In Section 5 a very high order (O(h9)) approxi- 
mation for the rectangle is given where the finite difference Laplace operator is a 
thirteen point 0(h10) operator. 

Finally we conclude with an application of Theorem 2.7 to the "seemingly most 
natural" finite difference analogue of the Dirichlet problem for the elliptic operator 
Uxx + Uxy + Uyy. 

For a futher introduction to this problem cf. Forsythe and Wasow [101 and 
the references contained therein. 

II. Matrix Preliminaries. As a prelude to the study of the discretization error 
we shall classify the matrices involved and discuss their properties. 

It is well known that if v(x, y) is a sufficiently smooth function for which -Av > 

0 in R and v > 0 on C then v > 0 in R also. This property of the Laplace operator 
is sometimes called the "maximum principle." Since this is true in the limiting case, 
we should expect that for sufficiently small mesh size our finite difference analogue 
would possess the same property. 

Definition 2.1. A matrix A is said to be "monotone" if Ax > 0 implies x > 0 
for any vector x. (The inequality is understood to be element-wise.) 

Another characterization of monotone matrices is given by the following well- 
known theorem, cf. Collatz [8]. 

THEOREM 2.1. A is monotone if and only if A is non-singular and A-1 > 0 (i.e. 
each element of A-1 is non-negative). 

This property of monotone matrices corresponds to the non-negativity of the 
Green's function in the continuous problem. It is not easy, in general, to discover by 
inspection that a given matrix A is monotone, although this is a property which is 
useful in studying the order of convergence. However, many common finite differ- 
ence analogues do belong to the following easily identifiable subclass of monotone 
matrices. 

Definition 2.2. An N X N matrix B with elements b is said to be of "positive 
type" if the following conditions are satisfied: 
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(a) bj ?< 0, i H j 

(2.1) (b) E bjk > 0 for all j, with E b p > 0 for j C J(B) # 0, 
k k 

(c) for i j J(B) there exists a finite sequence of non-zero ele- 
ments of the form bik, bklk2, ... , bkrj where j C J(B). 
Such a sequence is called a "connection" in B from i to 
J(B). 

THEOREM 2.2. If B is of positive type, then B is monotone. 
This theorem has been proved for classes of matrices closely related to those of 

positive type cf. L. Collatz [8, p. 45], and for this case in [6]. 
A particular subclass of matrices of positive type are the Minkowski matrices 

considered by Ostrowski [15], [16], and [17]. A positive type matrix is a T\'Iinkowski 
matrix if J(B) = {1, 2, ... , N}. Ostrowski also defines an intermediate class of 
matrices between those of positive type and those which are monotone, which he 
calls "M-matrices." 

Definition 2.3. A monotone matrix B is an M-matrix if 

(2.2) b, < 0, a #! 3. 

This implies baa! > 0, since if baa, < 0 for some a then 1 = Z2 b.j(b-1)j. < 0. 
THEOREM 2.3 (OSTROWSKI). Let B satisfy (2.2); then B is an M-mnatrix if and 

only if all of the principle mninors of B are positive. 
THEOREM 2.4 (OSTROWSKI). Let B satisfy (2.2); then B is an Al-mnatrix if there 

exists a vector x > 0 such that Ax > 0. 
We see from the above theorems, particularly the latter, that M-matrices form a 

somewhat more easily identified class of monotone matrices. The following theorem 
of Ostrowski, is of particular interest in this connection. 

THEOREM 2.5. An Al-matrix B is characterized by the property (2.2) and the exist- 
ence of a positive diagonal matrix D such that D1'BD is a Minkowski matrix. 

The monotone matrices which arise in certain finite difference analogues to 
elliptic boundary value problems are M-matrices (in most of these cases they are 
even of positive type). However, a wide class of otherwise acceptable finite dif- 
ference analogues do not fit in this category. For example, the five point O(h4) 
approximation to Uxx violates the condition (2.2) since the coefficients alternate in 
sign. In general, those finite difference analogues with higher order local truncation 
error will not be M-matrices. From the heuristic argument given above, we might 
expect them to lead to monotone matrices, at least for sufficiently small mesh size. 
That this is indeed the case for a broad class, which includes positive type matrices, 
is the main point of our discussion. 

The following generalization of Theorem 2.5 gives a characterization of the en- 
tire class of monotone matrices. 

THEOREM 2.6. B is a monotone matrix if and only if there exist non-negative mat- 
rices P1 and P2 such that P1BP2 is of positive type. 

For a proof of this theorem cf. Bramble and Hubbard [6]. This theorem was 
applied in that paper to yield higher order estimates for a finite difference analogue 
to the one-dimenisional boundary value problem based on the O(h4), five-point 
approximation to d2/dx2. The approach used there was analytical in nature, using 
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the properties of the Green's function in the continuous problem. In this paper 
we take an entirely algebraic approach which seems to be both simpler and to yield 
sharper results. 

We note first that if B admits the factorization B = B1 -B2. .- Br where 
Bi, i = 1, - , r, are M-matrices then B is monotone. The following theorem 
suggests a factorization into M-matrices, which applies to the matrices of 
many common finite difference analogues of elliptic boundary value problems 
which are not themselves M-matrices. 

THEOREM3 2.7. Let B have unit diagonal with ,j b1j > O, J(B) 5? 0. Let B 
be written as the matrix sum B = I - H1 -H2 where 

(a) (Hi)aa = 0, 

(2.3) (b) I - H1 is of positive type, 

(c) (I - H1) 1H2 0, 

(d) ,for each k f J(B) there exists a "connection" in H1 from 
k to J(B). 

Then the factorization 

(2.4) B = (I - H1)[I - (I -H) H21 

is such that each factor on the right is of positive type and hence B is monotone. 
Proof. Since I - H1 is of positive type it is an M-matrix. Hence by Theorem 

2.5 there exists a diagonal matrix D with positive diagonal elements such that 
I - D-11HD is a Minkowski matrix. Thus p (HI) = p(D-'H,D) < 1. Hence the 
Neumann expansion converges; i.e. 

(2.5) (I- Hi)1 I + H1 + (H )2 + 

We now show that 

(2.6) [I -(I - H1)-1H2] = (I -H)-1B 

is a Minkowski matrix. By assumption, (2.2) is satisfied. It remains to be shown 
that the row sums of (I - H1) 1B are positive. If i E J(B) we see from the first 
term on the right side of (2.5) that the corresponding row sum is positive. On the 
other hand, if i i J(B) then by (2.3d) there is an integer r and an element in 
(Hi)r with j E J(B) such that 

(2.7) (Hl)ikl- (HI) kik2 e(Hl)kri > ?* 
Hence 

[(Hi )r B]ik = Z(HI) B (H1')l [E Bk] > 0. 
k I k k 

Now from (2.5) we see that the row sum of (2.6) corresponding to any row i ( J(B) 
is positive. Thus B is the product of two matrices of positive type and is therefore 
monotone. 

III. Dirichlet Problem for Poisson's Equation in a Rectangle, e = 0(h4). For 
simplicity assume that R is a rectangle in two dimensions, with a square mesh 
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(size h) which fits R exactly. The necessary modifications which yield the corre- 
sponding estiuate for the discretization error for general regions are treated sepa- 
rately in the next section. Consider the Dirichlet problem for Poisson's equation 
for the region R: 

2 

(3.1) -Au = -( + a) f in R, , u = gin C. 

Let the points of Rh, Ch, Ch be as indicated in Figure 1. We wish to formulate a 
finite difference analogue of (3.1) in such a manner that the discretization error is 
O(h4). We shall follow the general rules laid down in the introduction. For (x, y) E 
Ch** let 

(3.2) Ah V(x, y) =-h-2{V(x + h, y) + V(x - h, y) 

+ V(x, y + h) + V(x, y - h) - 4V(x, y)}. 

Clearly if u(x, y) E C' in R + C then 

(3.3) [AhU(X, y) - Au(x, y)] = O(h2). 

For (E, w) G Rh let 

AhV(t, ?7) = h2{-A[V(t + 2h, n) 

(3.4) + V( - 2h, w)+ V(t, X+ 2h) + V(S, X2h)] 

+ {V(+ ? h, n) + V(-h, -h) + V(S, X + h) + V(S, X-h)] 

- 5V(t, a)}. 
Again we have 

(3.5) [Ahu(y, 7 -Au(t, O)] = 0(h4). 

The difference operator defined in (3.4) is seen to be the nine point "cross" which 
clearly violates the sign condition (2.2) and hence the resulting matrix will not be 
an M-matrix. A different O(h4) approximation is the nine point "box" operator 
which does satisfy (2.2) and has been considered previously [3]. The finite difference 
analogue of (3.1) is then given by 

(3.6) - AhV(p) = f(p), p C Rh + Ch**, V(p) = g(p), p C Ch. 
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Let A be the matrix of the system (3.6). Define A = DA where D is the diagonal 
matrix defined by 

a1, E Ch 

(3.7) daa = h2/ 4, a Ch** 

h 5, a E Rh 

The matrix A has unit diagonal. The operator at the points (x, y) and (S, w) then 
has the coefficients given in Figure 2. 

Because of the difficulty of visualizing the matrix A arising from the two dimen- 
sional problem we shall use the set of mesh points instead. A row of A corresponds 
to a point (like (x, y) or (S, -) in Figure 2) with which the finite difference operator 
is associated. The columns of A represent the points which are involved in the finite 
difference operator. For example the element --L will appear in the row associated 
with (t, '), and columns corresponding to (t ? 2h, -), (Y, X ? 2h). 

LEMMA 3.1. A is a monotone natrix. 
Proof. We shall decompose A = I - H1- H2 and apply Theorem 2.7. Let H1 be 

the matrix with zero rows corresponding to points of Ch and patterns at typical 
points (x, y) E Ch** and ( E, j) CRthwhere O < E, e _ I and are otherwise arbi- 
trary (Figure 3). The set J(A) corresponds to points of Ch and clearly any point 
of Rh + Ch* iS connected to Ch through elemnents of H1 . I - H1 is clearly of posi- 
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_~ 1 1 60O -(1 + -1) 1 _ ( + 6 ) 10 
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tive type. The matrix H2is represented by the patterns, shown in Figure 4, at points 
(x, y) E Ch** and (U, q) E Rh. 

6 0 

06 0 + -v 

e O e -~~610(0 + 0) ? (6- +e)-1 

(X, y) (%, w) 

e (6t0 + e) 

_ 
60 

FIGURE 4 

We need only verify that (I - H1) -H2 ? 0. Now 

(3.8) (I - H1) 1H2 = I12 + H1H2 + H12H2 + . 

Let us examine this series term by term. The negative terms in H2 are-6l and 
arise for example from a connection in H2 from (t, ) to (+ ? 2h, ) (Figure 5) or if 
(+ ? h, ?) E Ch* (Figure 6). We wish to determine E, e so that the indicated element 
in HjH2 is larger than -I-, i.e. 

(3.9) 
0- 

E) >- 

( - e - 60 

60 

) (+- h,() (+2h 
FIGURE 5 

(&E) 

60 

.X o) (C h ,q) (C+2h7q 
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Let E = Th and e = 8 and we see that the inequality is satisfied. Hence the negative 
elements in H2 are cancelled out by terms in H1H2 . Similar considerations apply to 
any two successive terms since 

(3.10) H rH2 + Hi"+lH2 = H r[H2 + H11i2]. 

In words, (3.10) tells us that the negative contribution toward the elenment of 
(I - Hi)1H2 made by a product of the form 

(Hi)ii) (l)i) .*-- (H1)ir-1ir(H2)irj < 0 

is cancelled by adding a term of the type 

(Hl),lil, ) J[ili2 .*-- (H1 )ir -1ir (Hl )irk(H2)7,j > 0- 

We note that this last term is needed nowhere else to overcome negative terms, a 
fact which is of crucial importaince to the proof. This is the reason for all of the 
negative elements appearing in H2 . The hypotheses of Theorem 2.7 are all satis- 
fied and we conclude that A is a monotone matrix. Since D ? 0 then A = D-1A is 
also monotone. For E, e as chosen above we can show by similar reasoning that 
H12(I - H1)1 > 0. Since 1H2(I- H1)1 is similar to (I - H1)'H2 we see that they 
have the same spectral radius p < 1. Hence [I - H2(I- H1i)1]1 exists and is 
non-negative. The matrix I - H2(I - H1)' belongs to the more general class of 
matrices called M-mnatrices which includes those of positive type as was pointed 
out in Section 2. 

Let the elements of the finite difference Green's function (A-' renormalized) be 
g(p, q) defined by 

Ah,1,g(p, q) = h 2(p, q), p E Rh + Ch** 

g (p, q) =8(p, q), p ECh 

O3p, q) =p q 
p P q, 

where q E Rh + Ch** + Ch . Poisson's formula (which is just a restatement of the 
fact that Ax y x = A-1y) becomes 

(3.12) W(p) - h2 E g(p, q) [-AhW(q)] + E 9g(p, q) W(q), 
qE(R h +C h qEtC h 

where Wf(p) is an arbitrary mesh function. We note that g(p, q) > 0 by Lemma 3.1. 
LEMMA 3.2. h 2qERh g(p, q) < d 2/16 where d is the diameter of the smallest cir- 

cumscribed circle about R. 
Proof. Let W(p) -d2/16 - r2/4 -hEqERh+C* g(p, q) where r is the distance 

from the center of the circle to p. Clearly AW > 0 implies W > 0 and the conclu- 
sion follows. 

LEMMA 3.3. 

g9(p, q) < 2. 
qE Ch** 

Proof. Let D be the diagonal matrix 
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a ECh 

(daa) = (I -EH)j , a E Ch 
jI 

4 oaE Rh 

so that 

(3.13) [O(I - Hi)]aj= 1. 

Consider the factorization 

(3.14) A = D-1[I -DH2(I - HE)--D-'}D(I -H1) 

and let 

H = DH2(I- H) 

so that 

(3.15) A- =[(I-(1-H1)] (I - H) D. 

Now 

g(p q) h2 E (A'D) 
(3.16) qE Ch** 9 E Ch* _ 

= Z {[D(I - H1) p1(I - H7D}pq. 
qE Ch 

We see from (3.13) that 

1 = i >j { [D(I -H1)1} 1pj[D(I -Hl)]jk 
I j 

(3.17) = 
) -(I-HI)]-'}pj 

Hence 

(3.18) E g(p, q) < '{ max E [(I-H71D],s}. 
qE Ch** OERh+Ch**+Ch qECh** 

From (3.3) we see that 

(3.19) 0 aj 

Furthermore since H and (I - H1) 1H2 are similar we have p(H) = p[(I - H1) 1H21 

< 1. Hence (I - H) is nonsingular and (I -H)' > 0. We recall that 

(3.20) daa2, a E Ch; daa = 1, a E Ch. 

Now if c* E Ch** and c E Ch is such that a,*, 5 0 then 

(3.21) [H2(I - H1)']c*c > (H2)c*c = 8 

since the negative terms in the expansion are cancelled out by the remaining terms. 

In view of this we see that 

(3.22) dc*c[H2(I - H)- ](d4 > 2 = 

Now by defining y such that 
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(3.23) y t 
o0, a ECh, 

we conclude, using (3.19) and (3.20), that 

(3.24) {D-1(I - H)yl}* _ 8 

Hence 

1 > {[(I - H)AIjj[D -(II--H) y]}a 

(3.25) > E [(I*-* HYD]j[D--(I-H)y] 

> 1 (I -H)-Da 
j ECh** 

Finally upon substituting (3.25) into (3.18) we prove the lemma. 
The following theorem which relates the discretization error to the local trunca- 

tion error now follows immediately. 
THIEOREM 3.1. Let e u - v, where u, v are defined by (3.1) and (3.6) be the dis- 

cretization error. If u has bounded sixth derivatives in R + C then e = 0(h4). 
Proof. Substituting e into (3.12) and noting that e = 0 on Ch we see that 

((p)I ? [ h2 Z g(p, q)]{max I Ahu -u } 
(3.26) qERh 

+ h2[ E g(p, q)7{max I AhU - Au }. 
_qECh** Ch** 

Substituting (3.3), (3.5) into (3.26) and applying the result of Lemmas 3.2 
and 3.3, yields the desired estimate. Here again as in [3] we note that the local 
truncation error at points near the boundary is only 0(h2). Having demonstrated 
the ideas involved by considering for R a rectangle we now treat the problem for a 
general region. 

IV. The Dirichlet Problem for Poisson's Equation in a General Region, e- 

O(h4). We again consider the problem (3.1) but for a region R with boundary C. A 
square mesh with mesh size h is placed on R. We define three disjoint sets of mesh 
points in f. Let Ch* be made up of those points in R each of which has at least 
one of its four nearest neighbors lying in the complement of R. Let Ch** be the set 
of mesh points in R with one or more neighbors in Ch*. Let Rh be the remaining 
mesh points in R. We note that this implies that the four nearest neighbors of each 
point in Rh are in Ch**, a fact of crucial importance in the development of the pre- 
ceding section. Let the set of boundary crossings make up the set Ch . 

Define the operator Ah by (3.2) and (3.4) on the sets Ch** and Rh respectively. 
If p = (x, y) E C,* then U$X and W are each approximated to within 0(h2) even 
though this will usually involve the use of unbalanced four point formulas in each 
case. For example if both (x - Xh, y), (x, y - Ah) E Ch with 0 < X, / < 1 near 
the boundary (we assume that h is chosen so small compared to the radius of curva- 
ture of C that at most two neighbors of p will belong to Ch) then we define 
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Ax V(x, y) h-2 Fx v(x + 2h, y) + 2(2-X) v(x + h, y) 

+ X+ 6 -v(x -Xh, Yy(3 x)v (X, Y)] 
(4.1) X)(?X + 1) (X + 2) (-h )--X )v(,)] 

to v(x,my)-hL2+h 2 v(x,y + 2h) + 2(2 v 4) v(x, y + h) 

+ 6l( v(x, y-gh) (3 ) v(x, y)]. 

Of course if (x - h, y) and (x + h, y) E C then each reduces to a three point oper- 
ator. The assumption that p has at most two neighbors outside of R may eliminate 
from consideration certain regions having corners with acute angles. 

We now define the operator Ah at the point p E Ch* to be 

(4.2) AhV(p) AxV(p) + Ayv(p), 

and note that the local truncation error is 

(4.3) 1 AhU(p) - Au(p) - (h2). 

The finite difference analogue of (3.1) is given by 

-AhV(P) = f(p), p E Rh + Ch** + Ch*, 
(4.4) 

4V(p) = g(p), p E Ch . 

It is not clear that the inverse matrix (Green's function) for the total problem is 
non-negative although it can be easily established as in [3] that the inverse matrix 
exists. This question has been considered in [20] for an 0(h4) analogue based on the 
usual nine point approximation to A at points of Rh given in [3]. Such knowledge is 
not required to establish the order of the discretization error as was pointed out in 
[10, p. 288] and utilized in [3]. The same technique can be used here. We define an 
interior finite difference Green's function g(p, q) as the solution of the following 
problem for each value of the parameter q E Rh + Ch** + Ch* 

-Ah,pg(p, q) = a(p, q)h, p C Rh + Ch, 

(4.5) 9g(P, q) = a(P, q), p E Ch*. 

We note that the considerations of the preceding section, while derived only for a 
rectangle, are equally valid for a rectilinear region whose sides lie along mesh lines. 
The mesh region Rh + Ch** with boundary points Ch* are of the same type as would 
arise in such a case. Hence the considerations of the preceding section apply di- 
rectly to g(p, q) as defined by (4.5) including its existence, non-negativity, and the 
inequalities given in Lemmas 3.2 and 3.3. 

The Poisson formula in this case is given by 

(4.6) W(p) = h2 E g(p, q)[-AhW(q)] + E g(p, q)W(q), 
qERh+Ch* qECh* 

where W(q) is any mesh function defined on the point set Rh + Ch** + Ch*. 

Substituting the function W 1 into (4.6) yields the relation 
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(4.7) E g(p, q) = 1. 
qE Ch* 

We note further that if A is the matrix of the system-l (4.4) then for any i E Ch* and 
any function WI4 which vanishes at points of Ch we have the equation 

E atjWj E Z ijW 
(4.8) Wi = _ 

C tii ai 

and hence by an easy calculation the inequality 

h2 (4.9) < AhW -Ih + 3W max I TV, 

The order of the discretization error is now given by the following theorem. 
THEOREm 4.1. Let u E C6(R) and V be the solutions of (3.1) and (4.4) respectively. 

Then the discretization error e u - V is 0(h4). 
Proof. Substituting e into (4.6) and using (4.9) we arrive at the inequality 

eP) ?-< [h2 E g(p, q)] max AhU(t) - A(t) I 
qERh tERh 

(4.10) + h'[ g s (p, q) max AhUt(t) - AU(t) 

+ g(p, q)]{ n-nax I AhU(t) iAU(t) i+ 4 ax I J}. 
-qECh* t ECh* 

Substituting (3.3), (3.5), (4.3), (4.7) and the results of Lemmnas 3.2 and 3.3 yields 
the desired result. 

We comment at this point that another finite difference analogue for this prob- 
lem which involves the 0(h4) operator for the point and its eight nearest neighbors 
has been proposed by the authors in [3] and shown to have an 0(h4) discretization 
error. Moreover the reduced matrix in that case is an M-matrix and hence certain 
theorems can be applied there to show the convergence of various iterative methods, 
cf. [20] and [22]. We note further, however, that the right hand side of the finite 
difference equation is more complicated in the problem defined in that paper. 

V. Dirichlet Problem for Laplace's Equation in a Rectangle, 6 = 0(h9). An- 
other interesting application of this theory is the formulation of very high order 
approximations to the solution of the Dirichlet problem for Poisson's equation in a 
rectangle. 

Since the nine point "box" approximation to A gives rise to a positive type 
matrix and since the local truncation error in this case is 0(h6), cf. Kantorovich 
and Kryloff [13, p. 190] we can apply the technique of Gerschgorin and show that 
the discretization error is 0(h6), as has been pointed out in various places [21], [23]. 
We shall formulate an 0(h9) finite difference analogue which is of nonpositive type 
and apply Theorem 2.7 to show that the resulting matrix is nmonotone. 

Again we consider the rectangle in Figure 1 with the sets Rh I Ch**, and Ch as 
described there. We consider the problenm 
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Au = 0 in R, 
(5.1) 

u = g on C 

where u was chosen to be harmonic only as a matter of convenience. Let 0 be the 

10 

6 2 5 

11 3 0 1 9 

7 4 8 

12 

FIGURE 7 

point in Figure 7 and we define Ah to be the usual nine point "box" operator there, 
i.e. 

(5.2) A,hW10- {4 Wi + ZE W - 20 Wo} 

It is well known, cf. Kantorovich and Kryloff [13, p. 190], that for the harmonic 
function u(x, y) 

40 a8u 
(5.3) AhU - AU =AhU = 3(8!) 

aX4(y4 
+ 0(hl0). 

The h8 term contains the factor (al?u/lax1 + &10u/0y10) which is zero for harmonic 
functions. If (x, y) is a point of Ch** e.g. on the bottom, (x, h), and u E C9(R) then 

a8 &'u a8ua9 (x8 h 8 8 9 

(5.4) 4(X h) (X, h) = ( x 0) + h (X, r). 

Hence at such a point we pose the following finite difference analogue whose local 
truncation error is 0(h7) 

(5.5) AhI7(x, h) = 40h- aI (x, 0). AhV(X) 3( ) &8 

The corresponding difference equation is prescribed at the remaining points of Ch**. 

On the other hand we can define a thirteen point difference operator at points 
of Rh whose local truncation error is 0(h10) in the following manner. Define the 
operator Ah* at the point 0 of Figure 7 to be 

(5.6) Ah*WO 12h2{4E Wi + Z W -20 Wo}. 

If (S, 7) represent the rotated coodinate system 
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x~ - 2-- 1-71, 

(5.7) 
1 1 

then the error is given by 

40h6 (98u 
Ah*a-Au = 3 (7A!) d 4 4 + 0(h'0) 

(5.8) _ ~~~~~~ ~~~40h8 C38u 

3(7!) d4dy4 0(h'0). 

We now define the operator Lh as the linear combination of Ah and Ah* which elimi- 
nates the mixed derivative, i.e. 

Lh WO -7 [8Ah Wo - Ah *W0o] 

(6.9) 1 4 8 1 2 

(-84h264 , 1W +12 Wi8 - E W1 -300 Wo 

From (5.3) and (5.8) we see that 

(5.10) Lhu -Au Lhu =0(h10). 

We pose the following finite difference analogue of (5.1) 

-LhV( p) = 0, p E Rh, 

-AhV(P) = 1(9), p E Ch**, 

V(p) = g, p G Ch, 

where l(g) is the appropriate eighth tangential derivative of g. We see from (5.9) 
that the matrix A of the system (5.11) is not of positive type. We shall now show 
how Theorem 2.7 can be applied to prove that matrix A is monotone. As before we 
normalize A through multiplication by a positive diagonal matrix D to yield A. The 
patterns of A are given in Figure 8. 

C** A Rh 

300 

l-- I1 1 I _1- 1 1 16 1 
20 5 20 25 75 25 

_ _ - 16 16 _ 
5 5 300 75 75 300 

1 t I I~ ~~~ ~~~ 16 1 
20 5 20 25 75 25 

FIGURE 8 
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** ~~Hi Ch H Rh 

20 10 20 25 75 25 

tO 10 75 

20 iO 2-0 25 75 25 

FIGURE 9 

H 
c ~ 2Rh Gh nh 

.--, -~~~~~300._ 
1 a 

-1*1 _ _ --7 _=75 

10 _ 10 7 75 300 

10 75 

FiGURE 10 

We decompose A = I - H1 - H2 as required in the hypothesis of Theorem 2.7 
so that H1 and H2 are the matrices corresponding to the patterns in Figures 9 and 
10 respectively. By the technique used in Section 3 we can establish the inequalities 

(5.12) 
(I - HI) H2 

! 0 

H22(I - Hi)-1 > 0. 

Hence by Theorem 2.7, A and therefore also A are monotone. 
To obtain estimates of the discretization error we once again define the finite 

difference Green's function g(p, q) by the equations 

Lh,pg(p, q) = 6(p, q)h2, p E Rh, 

(5.13) -Ah,pg(p, q) = - (p, q)h2, p E Ch 

g(P, q) = a(P, q), p E Ch . 

Since A is monotone we see that g(p, q) exists and is non-negative. 
We have the Poisson formula 
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W(p) = h2 E g(p q)[-LhW(q)] + h2 Ej g(p q)[-AhW(q)] 
(5.14) qERh qECh** 

+ E g(p, q)W(q). 
qE Ch 

The inequality of Lemma 3.2 is again valid as is an inequality of the type given in 
Lemma 3.3. The proofs in both cases follow in the same manner as those given in 
Section 3 and hence are not reproduced here. 

Finally we have the error estimate: 
TIIEOREM 5.1. Let e = u - V where u and V are defined by 5.1 and 5.11 respec- 

tively. If u G C12(R) then e = 0(h9). 
The proof follows from (3.26) and the estimates on the local truncation errors 

derived above. 
We note in passing that in extending these results to Poisson's equation the right 

hand sides of (5.11) will be a function H( Au) which involves Au and its derivatives 
through order eight. 

VI. Dirichlet Problem for an Elliptic Equation, e = 0(h2). We consider here 
the problem 

Lu= -[uxx + u + uyy] = f in R, 
(6.1) 

u= g inC 

where R is the rectangle of Section 3. The results of this section can be extended to 
more general regions by the same technique used in Section 4. The choice of a 
particular uniformly elliptic operator L is to a great extent arbitrary. Our choice is 
used as an illustration in a discussion of the maximum principle in a paper by Diaz 
and Roberts [9]. 

Define the sets Rh and Ch** for R as in Section 3. The "seemingly most natural" 
0(h2) finite difference analogue to L at a point of Rh + Ch** involves the eight 
nearest neighbors, cf. [10, p. 190] 

-Lhv(x, y) 

--h-2{v(x + h, y) + v(x - h, y) + v(x, y + h) + v(x, y - h) 
(6.2) 

+ 4[v(x + h, y - h) -v(x - h, y + h) - v(x + h, y - h) 

+ v(x - h, y - h)] -4 v(x, y)}. 

Clearly 

(6.3) Lhu - Lu I -0(h2). 

We define the finite difference problem 

Lh V(p) = f(P), p E Rh + Ch 

V(p) = g(p), p E Ch. 

As was pointed out in [9] the matrix of the linear system (6.4) is not monotone. 
This is easily seen by considering the square with one interior point (see Figure 11) 
and the mesh function 
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1 8 7 

2 o 6 

3 4 5 

FIGURE 11 

:-1) p = 

(6.5) V(p) =16, p= 1 
t0, p =2, *-8. 

Clearly 

LhV(P) 0 0, p E Rh + Ch, 
(6.6)Vp) , Gh 

V(p) 0 O p E Ch, 

and yet V < 0 at the interior point. 
A maximum principle is valid, however, for mesh functions which vanish on Ch. 

That is 

LhV(p) 0 0, p E Rh + Ch 

V( p) =0, p E Ch, 

implies that 

(6.8) V(p) > 0, p E Rh + Ch. 

Equivalently it is true that the finite difference Green's function for the reduced 
probleii, obtained by substituting the boundary values and solving the resulting 
system, is non-negative. This function is given by 

(6.9) Lh,pg(p, q) = 6(p, q)h2, p E Rh + Ch** 

where Lh at points of Ch** now involves only points of Rh + Ch**. Poisson's formula 
for an arbitrary mesh function V defined on Rh + Ch** is given by 

(6.10) V(p) = h 2 E g(p, q)[LhV(q)]. 
qERh+Ch** 

The existence and non-negativity of g(p, q) will now be established using Theorem 
2.7. 

Let A be the matrix of the reduced system. Define A = DA where D is the diag- 
onal matrix defined by 

(6.11) d=j-=tj 
h 

so that A has a unit diagonal. We now write A as 

(6.12) A = I-H1-H2 

where H1 and H2 are matrices corresponding to the patterns in Figure 12 at the 
point (t, mn) E Rh and if (x, y) E Ch**, for example, is a typical point on the bottom 
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H2 

4 0 4 0 0 0 

~1 1 -'1 
16 4 16 

FIGURE 12 

H,1 112 
1 1 1J 

16 4 16 

4 0 4 0 0 0 

(X, Y) (X, y) 

FIGURE 13 

we have Figure 13. We note that the various hypotheses of Theorem 2.7 are satis- 
fied. The verification of (I - H1)1H2 ? 0 follows from the same argument used 
in Section 3. Hence g(p, q) exists and g(p, q) > 0. A bound on h 27qRh+Ch** g(p, q) 
is given by Lemma 3.2. 

Let e = u -V as before. We see that the discretization error satisfies 

(6.13) e(p) = h2 Z g(p, q)[LhE(q)] 
qERh+Ch** 

and hence 

d2 
(6.14) 161 - d max LhU(q) - Lu(q) 0= (h2). 

16 qERh+Ch** 

We niote that substituting V - 1 in (6.10) gives 

(6.15) E g(p, q) < 1 
qE Ch** 

and hence the contribution of the Ch** points to the error are 0(h4) as we would 
expect. If we were to replace the equations in (6.4) at corner points of Ch** by the 
equations 

(6.16) -AhV(p) = 0 

where Ah is defined by (3.2) then the above argument can be carried through di- 
rectly for the mwatrix of the total problem. The local truncation error at these points 
is 0(1) and in the light of the above remark we see that the discretization error is 
still 0(h2). 

If R were a general region then positive type approximations to L at points of 
Ch could be formulated with a local truncation error of 0(h?) or 0(h) so that the 
same argument can be used to establish the monoticity of the total matrix. Of 
course we could formulate an 0(h2) finite difference analogue which gives rise to a 
positive type matrix, cf. Bramble and Hubbard [5] and the references contained 
therein. 
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The examples given are meant to illustrate the use of Theorem 2.7 and are in 
no sense exhaustive. A further interesting class of applications comes from the 
second and third boundary value problems and will be reported separately in a 
subsequent paper. 
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